
CS250P: Computer Systems Architecture
Processor Design Constraints

Sang-Woo Jun

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Given $X,
how would you architect the best processor?

Four large cores?
vs

Eight smaller cores?

Why?

17 pipeline stages
vs

40+ pipeline stages?

Simultaneous Multithreading?
Y/N?

N-way superscalar?

How many execution units
per pipeline?

How many registers
in register file?

Constraints involved in processor design

Chip Area

Attainable Clock Speed

Instruction-Level Parallelism

Amdahl’s Law

Constraint #1: Chip Area per $

https://www.gep.com/blog/mind/outlook-for-the-global-semiconductor-silicon-wafer-industry

Chip

https://cpumuseum.jimdofree.com/museum/intel/pentium-mmx/

Larger chip → Higher cost!

Constraint #1: Chip Area per $

https://cset.georgetown.edu/article/analysts-believe-that-a-single-tsmc-5nm-wafer-costs-17000/

Increasing!

Steady...

Moore’s Law no longer leads to
correspondingly cheaper chips per cost…

Constraint #1: Chip Area per $

Larger chip → Higher cost!

Example standard cell library

Yield Plummets with Larger Chips

Smaller chip: 80% Yield Larger chip: 32% Yield

https://www.anandtech.com/show/15219/early-tsmc-5nm-test-chip-yields-80-hvm-coming-in-h1-2020

2x chip size results in more than 2x cost…

What is the cost/performance sweet spot?

After Considering Constraint #1

❑ The size of our processor may be limited…
o How much chip space do we want to pay for?

❑ How fast can we make it go, within size limitations?

Constraints involved in processor design

Chip Area

Amdahl’s Law

Attainable Clock Speed

Instruction-Level Parallelism

Constraint #2: Attainable Clock Speed

❑ “More complex ISA slows down the clock”
why?

This requires a bit of circuits recap…

Combinational and sequential circuits

❑ Two types of digital circuits

❑ Combinational circuit
o Output is a function of current input values

• output = f(input)

• Output depends exclusively on input

❑ Sequential circuit
o Have memory (“state”)

• Output depends on the “sequence” of past inputs

Combinational logic

State

What constitutes combinational circuits

1. Input

2. Output

3. Functional specifications
o The value of the output depending on the input

o Defined in many ways!

o Boolean logic, truth tables, hardware description languages,

4. Timing specifications
o Given dynamic input, how does the output change over time?

We’ve done this in CS151

Hinted at in CS151

Some examples of combinational circuits

❑ Multiplexer selects one input signal (A/B) based on the control (S)

❑ Wider fan-in muxes can be built hierarchically

Hierarchical design of a
8x1 multiplexer

Some examples of combinational circuits

❑ Addition circuit chains together single-bit (“Full”) adders
o 32 adders for 32-bit adder

Source: PyQUBO: Python Library for Mapping Combinatorial Optimization Problems to QUBO Form

Full adder

32-bit ripple carry adder

Timing specifications of
combinational circuits

❑ Propagation delay (tPD)
o An upper bound on the delay from valid inputs to valid outputs

o Restricts how fast input can be consumed
(Too fast input → output cannot change in time, or undefined output)

A good circuit has low tPD

→ Faster input
→ Higher performance

Source: MIT 6.004 2019 L05

How do we get low tPD?

Timing specifications of
combinational circuits

❑ Contamination delay (tCD)
o A lower bound on the delay between input change to output starting to change

• Does not mean output has stable value!

o Guarantees that output will not change within this timeframe regardless of what
happens to input

Source: MIT 6.004 2019 L05

Example: Inverter

Additive delay of combinational circuits

❑ A chain of logic components has additive delay
o The “depth” of combinational circuits is important

❑ The “critical path” defines the overall propagation delay of a circuit

Example: A full adderSource: en:User:Cburnett @ Wikimedia

Critical path of three components
tPD = tPD(xor2)+tPD (and2)+tPD (or2)

Long critical path
→ Slower input rate!

Sequential circuits

❑ Combinational circuits on their own are not very useful

❑ Sequential logic has memory (“state”)
o State acts as input to internal combinational circuit

o Subset of the combinational circuit output updates state

Abstract model of
Sequential circuits

Slightly more realistic
Sequential circuit

Synchronous sequential circuits

❑ “Synchronous”: all operation are aligned to a shared “clock” signal
o Speed of the circuit determined by the delay of its longest critical path

o For correct operation, all paths must be shorter than clock speed

o Either simplify logic, or reduce clock speed!

A bit more about clocks

❑ All components of a synchronous circuit shares a common clock signal
o Typically dynamic behavior starts at rising clock edge

o Clocks propagated via special “clock tree” wires

Source: Buffer Insertion and Sizing in Clock Distribution Networks with Gradual Transition Time Relaxation for Reduced Power Consumption

Clock distribution H tree

Timing constraints of state elements

❑ Synchronous state elements also add timing complexities
o Beyond propagation delay and contamination delay

❑ Propagation delay (tPD) of state elements
o Rising edge of the clock to valid output from state element

❑ Contamination delay (tCD)
o State element output does not change for tCD after clock change

❑ Setup time (tSETUP)
o It takes tSETUP times for new input to register in state element

❑ Hold time (tHOLD)
o Input to state element should hold correct data for tHOLD after clock edge

Timing behavior of state elements

❑ Meeting the setup time constraint
o “Processing must fit in clock cycle”

o After rising clock edge,

o tPD(State element 1) + tPD(Combinational logic) + tSETUP(State element 2)

o must be smaller than the clock period

Data from here
…must reach here

…before the next clock Otherwise, “timing violation”

Timing behavior of state elements

❑ Meeting the hold time constraint
o “Processing should not effect state too early”

o After rising clock edge,

o tCD(State element 1) + tCD(Combinational logic)

o must be larger than tHOLD(State element 2)

tCD(State element 1) tCD(Combinational logic)

tHOLD(State element 2)

= Guaranteed time output will not change

Setup and hold time window

Clock Input

Data Input

Flip
Flop

Clock

Data

Setup time Hold time

Allowed to be unstable Allowed to be unstable

If any constraint is violated, state may hold wrong data!

Real-world implications

❑ Constraints are met via Computer-Aided Design (CAD) tools
o Cannot do by hand!

o Given a high-level representation of function, CAD tools will try to create a
physical circuit representation that meets all constraints

❑ Rule of thumb: Meeting hold time is typically not difficult
o e.g., Adding a bunch of buffers can add enough tCD(Sequential Circuit)

❑ Rule of thumb: Meeting setup time is often difficult
o Somehow construct shorter critical paths, or

o reduce clock speed (We want to avoid this!)

How do we create shorter critical paths for the same function?

Simplified introduction to placement/routing

❑ Mapping state elements and combinational circuits to limited chip space
o Also done via CAD tools

o May add significant propagation delay to combinational circuits

❑ Example:
o Complex combinational circuits 1 and 2 accessing state A

o Spatial constraints push combinational circuit 4
far from state A

o Path from B to A via 4 is now very long!

❑ Rule of thumb:
o One comb. should not access too many state

o One state should not be used by too many comb.

B

3 A

4

2

1

Looking back:
Why are register files small?

❑ Why are register files 32-element? Why not 1024 or more?

x0

x1

x2

x31

…

M
u

x

D
em

u
x

write select read select Hierarchical design of a
8x1 multiplexer

Propagation delay increases with more registers! → Slower clock!

Real-world example

❑ Back in 2002 (When frequency scaling was going strong, but larger FETs)
o Very high frequency (multi-GHz) meant:

o … setup time constraint could tolerate

o … up to 8 inverters in its critical path

o Such stringent restrictions!

Can we even fit a 32-bit adder there? No!

Limit to reducing critical path → Limit to clock speed

Also, Dennard scaling ended, ending clock speed scaling in general

“Complex ISA can slow down the clock”

Why?

If (encoding[0] == True)
 param1 = encoding[15:8];
else
 param1 = encoding[31:16];

Adds a MUX latency to critical path…

After Considering Constraint #1,#2

❑ The size of our processor may be limited…

❑ The clock speed may be limited…
o How do we optimize the ISA and microarchitecture to achieve best clock speed?

o Without using too much chip space?

❑ Can we do more work per clock cycle?

Constraints involved in processor design

Chip Area

Amdahl’s Law

Attainable Clock Speed

Instruction-Level Parallelism

Constraint #3: Instruction-Level Parallelism

❑ Given a sequence of instructions
o Some instructions can be executed independently

o If the processor has multiple execution units

https://en.wikipedia.org/wiki/Instruction-level_parallelism

Operations 1 and 2 are independent

Operation 3 depends on the results of 1 and 2

If our processor has two adders, 1 and 2 can be processed in parallel!

Note: ILP is about extracting parallelism from a SINGLE THREAD

Microarchitectural Approached to Exploit ILP

❑ Many approaches for discovering ILP and exploiting it
o Pipelining, Superscalar, Out-of-Order, …

o We will talk about soon!

These are TRANSPARENT, MICROARCHITECTURAL approaches.
(Software/Assembly is written without being aware)

Many ALUs, etc
execute many instructions per clock cycle!

Can we keep adding ALUs forever?

Constraint #3: Instruction-Level Parallelism

❑ No dramatic recent developments to exploit for ILP

❑ Later instructions, statistically, do depend on earlier ones

K. Olukotun, “Intel CPU Trends”

Instruction Level Parallelism
shows diminishing returns

Real-world examples:
Intel i7 and ARM Cortex-A53

CPI of Intel i7 920 on SPEC2006 Benchmarks CPI of ARM Cortex-A53 on SPEC2006 Benchmarks

(High CPI is not ARM-inherent. Newer A78 has ideal 6 CPI)

After Considering Constraint #1,#2,#3

❑ The size of our processor may be limited…

❑ The clock speed may be limited…

❑ Work per clock cycle may be limited…
o How much chip space do we want to invest in diminishing return ILP?

❑ How about if we had more cores?

Constraints involved in processor design

Chip Area

Amdahl’s Law

Attainable Clock Speed

Instruction-Level Parallelism

Modern processors are often multicore

https://www.techpowerup.com/292204/intel-sapphire-rapids-xeon-4-tile-mcm-annotated

Modern machines run hundreds of threads

How about less investment in ILP,
and simply more cores?

Sure, if we don’t care about the speed of any one task

Constraint #4: Amdahl’s Law

❑ Intuition: Given a task, some parts of it are inherently not parallelizable
o Dependencies…

Mike Bailey, “Parallel Programming: Speedups and Amdahl’s law,” Oregon State University CS575

Speedup

Parallelizable fraction
Non-parallelizable fraction

Constraint #4: Amdahl’s Law

https://en.wikipedia.org/wiki/Amdahl%27s_law

50% → Only 2x

Real-World is Often Worse

Due to other overheads including orchestrating parallel operations

Trang et. al., “Modeling Parallel Execution Policy of Web Services,” CloudComp 2015

Larger number of slower cores good

Smaller number of faster cores good

After Considering Constraint #1,#2,#3,#4

❑ The size of our processor may be limited…

❑ The clock speed may be limited…

❑ Work per clock cycle may be limited…

❑ Benefits of more cores may be limited…
o How do we balance core count vs ILP, given chip space restrictions?

No resource can scale forever!
Need to balance… How?

Application, benchmark-driven!

	Slide 1: CS250P: Computer Systems Architecture Processor Design Constraints
	Slide 2
	Slide 3: Constraints involved in processor design
	Slide 4: Constraint #1: Chip Area per $
	Slide 5: Constraint #1: Chip Area per $
	Slide 6: Constraint #1: Chip Area per $
	Slide 7: Yield Plummets with Larger Chips
	Slide 8: After Considering Constraint #1
	Slide 9: Constraints involved in processor design
	Slide 10: Constraint #2: Attainable Clock Speed
	Slide 11: Combinational and sequential circuits
	Slide 12: What constitutes combinational circuits
	Slide 13: Some examples of combinational circuits
	Slide 14: Some examples of combinational circuits
	Slide 15: Timing specifications of combinational circuits
	Slide 16: Timing specifications of combinational circuits
	Slide 17: Additive delay of combinational circuits
	Slide 18: Sequential circuits
	Slide 19: Synchronous sequential circuits
	Slide 20: A bit more about clocks
	Slide 21: Timing constraints of state elements
	Slide 22: Timing behavior of state elements
	Slide 23: Timing behavior of state elements
	Slide 24: Setup and hold time window
	Slide 25: Real-world implications
	Slide 26: Simplified introduction to placement/routing
	Slide 27: Looking back: Why are register files small?
	Slide 28: Real-world example
	Slide 29
	Slide 30: After Considering Constraint #1,#2
	Slide 31: Constraints involved in processor design
	Slide 32: Constraint #3: Instruction-Level Parallelism
	Slide 33: Microarchitectural Approached to Exploit ILP
	Slide 34: Constraint #3: Instruction-Level Parallelism
	Slide 35: Real-world examples: Intel i7 and ARM Cortex-A53
	Slide 36: After Considering Constraint #1,#2,#3
	Slide 37: Constraints involved in processor design
	Slide 38: Modern processors are often multicore
	Slide 39: Constraint #4: Amdahl’s Law
	Slide 40: Constraint #4: Amdahl’s Law
	Slide 41: Real-World is Often Worse
	Slide 42: After Considering Constraint #1,#2,#3,#4

